DOCUMENT RESUME

ED 388 277 IR 017 426

AUTHOR Muldner, Tomasz

TITLE Rapid Prototyping of Computer—Based Presentations
Using NEAT, Version 1.1.

PUB DATE 94

NOTE 8p.; In: Educational Multimedia and Hypermedia, 1994,

Proceedings of ED-MEDIA 94--World Conference on
Educational Multimedia and Hypermedia (Vancouver,
British Columbia, Canada, June 25-30, 1994); see IR

017 359.

PUB TYPE Reports ~ Descriptive (141) -~ Speeches/Conference
Papers (150)

EDRS PRICE MFO1/PCOl Plus Postage.

DESCRIPTORS *Authoring Aids (Programming); Computer Literacy;

Computer Mediated Communication; *Computer Software
Development; *Courseware; *Electronic Publishing;
Electronic Text; *Hypermedia; Information Storage;
Information Technology

IDENTIF1ERS *Links (Indexing); Prototypes

ABSTRACT

NEAT (iNtegrated Environment for Authoring in
ToolBook) provides templates and various facilities for the rapid
prototyping of computer-based presentations, a capability that is
lacking in current authoring systems. NEAT is a specialized authoring
system that can be used by authors who have a limited knowledge of
computer systems and no programming experience; these authors can
communicate with other members of the authoring team using
annotations, hypertext links and highlighting. Basic principles of
the NEAT design include: maintenance of the book structure, automatic
creation of computerized drills using templates for different
question types, support for reusability through storage capabilities,
a clear display of the final product, user—friéendliness, and the
ability to inspect scripts and properties of neatware objects.
Computer-based presentation developed with NEAT is called neatware.
Neatware is a specific type of courseware, based on a book metaphor.
Features of neatware include multiple views of the same material, an
electronic index, footprints showing student progress, margin and
"global" notes, electronic bookmarks, a storage list of previously
used pages, hypertext links for non-linear reading, electronic text
highlighting, examples, and examples. The user can develop neatware
by creating an outline of chapters, sections and pages; various
operations can be performed through the Control Panel. The
implementation of NEAT is based on a tree data structure in a single
text field. (Contains eight references.) (AEF)

o e v v v St e S St e e o vt 3 v vl 3 ol 3 v 3% 3t 3t 3 o o 9l o o' ole vl o' e vl 3% e de e e ofe S e e o'e vle oo ole vle e S vl s v e o s vt v 3% e v v vt v e v o 3% Yeole e
Reproductions supplied by EDRS are the best that can be made %
from the original document. d

Fe oot v e sl oo o vle o't ve e v ol de e o e ol ofe e Sl ve s ol o' Sl o ofe o' ol e 9 d e e dle e e ve 3 gt o o' ot o e o vl o e vl v o e e ole S v o o' S v o o o e v e e o

%

%

U.B. DEPARTMENY OF EDUCATION

e of Educational Resesrch and tmprovement
EDUCATIONAL RESQURCES INFORMATI
CENTER (ERIC) on

C This document has been reproduced as
recewved trom the person or organization
ornginating 1t

C Minor changes have been made o improve
reproguction Quahly

Rapid Prototyping Of Computer-BaSCd Presentations [} F‘omlsolv-eworonmlonsslaladmlhlsdocv

ment do not necessarly represent oMicral

USing NEAT’ Version 1.1 OERI position or policy

Otic,

“PERMISSION TO REPRODUCE THIS

Tomasz Miildner MATERIAL HAS BEEN GRANTED BY

Jodrey School of Computer Science c
Acadia University, Wolfville, Nova Scotia, BOP 1X0, Canada ary H. Marks
cmail: tomasz.muldner@acadiau.ca

ED 388 277

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."

Abstract: NEAT, which stands for iNtegrated Environment for Authoring in
ToolBook provides templates and various facilities for the rapid prototyping of
computer-based presentations. Outlines of the presentations can be created and

- modified. NEAT supports rcusability by allowing the author 10 store graphics
objects and cntire pages in a repository, and 1o retrieve them when needed. Finally,
NEAT provides support for communication between members of the authoring
tcam and between the team and the learncrs.

1 Introduction

Authoring systems have been used for many years and a number of interesting applications (coursewarc) have
been developed, sce [MAU90, ALE91]. However, currently existing authoring systems seem to be quitc weak
in the support for the following arcas:

¢ availability of tools for rapid prototyping

reusability of concepts and objects, such as graphic objects

hypertext and hypermedia facilitics

support for building meta-tools, such as icons to execute macros

cxtendibility.

While the author is provided with considerable support at the microscopic level, for cxample
specialized editors that arc used 1o creatc a single frame, text, graphics or animation 1o appear in this frame,
there is little support at a macroscopic level. Thus, it is not possible to prototype courseware and lcave details
for future development. Another important deficiency of the current authoring systems is that the authoring
tcam has t0 make an carly decision as to what the level of expertise of the expected audience is. For example,
there may be beginning learners who do not have any knowledge of the subject, and other leamners who have
some, or advanced knowledge. The advanced learner would find it boring t0 go over the entire material
necessary for the beginning learner, but may require additional information that is not made available 10 the
beginner. Thus, it would be useful to provide different views of the same material so that each learner can find
a vicw appropriate for his or her background.

Most, if not all, cxisting authoring systcms do rot scparate the creation and maintenance of the
knowledge base, and the presentation of this knowledge (for the description of the second gencration of
authoring systems, scc [MER89]). Members of an authoring tcam represent differcnt expertise and abilitics to
work on the development of computer based presentations. Very often there is no single author who crcates
coursewarc. Instead, there is an authoring tcam, whose members represent various types of expertise. For
cxample, onc member of the tcam may be a subject-arca expert, with an ultimate knowledge of the subject on
“which courseware is o0 be developed. This expert may have limited knowledge or time 10 actually develop
courscwarc. Other members of the tcam may be designers, specialists in lcarning stratcgics, and programmers;

Re1742¢

403

ERIC 2
REST COPY AVAll ARI E

for cxample, programmers specializing in graphics, animations, or multimedia. Only suvject-area experts
know what should be included in courseware, and so they should prototype this courseware. This prototype can
be further refined and modified by other members of the authoring team, provided that there is a simple and
effective way of communicating ideas between various members of the team.

NEAT is a specialized authoring system designed to alleviate some of the problems described above.
Version 1.0 provided limited support for views and question templates, sce [MAY93]. Here, we describe
NEAT 1.1, designed and implemented by the author of this paper in the summer of 1993. NEAT can be used
by authors who have a very limited knowledge of computer systcms and no programming experience. These
authors can communicate with other members of the authoring team using annotations, hypertext links and
highlighting. Computer-based presentation developed with NEAT is called neatware. NEAT is a ToolBook
application (ToolBook is produced by Asymetrix), and neatware, produced with NEAT is an application that
can be executed with the ToolBook run-time system.

The rest of this paper is organized as follows. First, in Scuiiosi 2 we describe neatware. Then, in
Section 3 we describc NEAT, and in Section 4 prototyping with NEAT. Section 5 briefly describes the
implementation of NEAT, and the Conclusion presents several examples of neatware,

2_ NEATWARE

Neatware is a specific type of courseware, based on a book metaphor. However, neatware can consist
of multiple views, for example a beginner view and an expert view. One can think of these views as scparatc
books, and the user can switch between various views. As in a traditional book, each view consists of chapters,
a table of contents, and an index. Each chapter consists of sections and pages; a section consists of pages and
sections. :

As in the real world, the appearance of these books can be altered in several ways by the rcader during
the lcarning process. Notes can be kept separate from the book, traditionally in a notebook, known as global
notes. Nolcs can be also kept on cach page being read, traditionally in the margin of the page, and therefore
known as margin notes. Bookmarks may be placed in various pages of the book. Words on each page can be
highlighted, in onc of several colors.

Unlike in traditional books, an clectronic book has other worthwhile features. Example pages and
windows can be accessed from various pages, possibly with a choice of the user's preference of example type
(c.g. Pascal, C or Modula-2 example), providing more insight into specific details of the ncatware. As cach
page is read, its name is stored in a list known as the history, which the reader can use 10 return to rccently
visited pages. Hypertext links can be used to move around in the book, moving the uscr to information which
may be more relevant. Also, the table of contents contains bread crumbs, or footprints, which show which
pages of the book have already been read. Of course, neatware also includes various navigation tools v allow
the reader to change pages and access all of the above features.

In summary, each neatware has the following characteristics:
multiple views of the same material; each view consists of chapters; chapters consist of pages
electronic index which can be modificd by the user
bread crumbs (or footprints), showing the progress of the student
margin notes that appear on each page
global notes thal resemble a sheet of paper attached to the book
electronic bookmarks which can be used to save references to the selected pages
history, showing the list of pages most recently visited by the user
hypertext links which can be used to read the material in a non-linear fashion
electronic highlighting of the sclected text
examples which can appear on cvery page. Each cxample is associated with the button and can be
activated by the learner by clicking on this button. There are three kinds of cxamples: an example which
appcears on a scparate page; an example which appears in a window on the same page; and an cxample
which can have several appc.rances, depending on preference that can be sclected by the Icarner (the
user's preference may be based on” his or her knowledge when studying the book, for cxample, on
knowledge of Pascal or FORTRAN when studying C)
* A repository of examples with a hicrarchical structure. These cxamples can be modified by the user. A
sample ncatwarce page is shown in Figure 2.1.

404

J

- R ' Drugs and Alcohol Abuse -

Al the bottom of the page, there are
Elle Setup Navigation Jools Print Help

various icons, used to navigate through
} Sample Page neatware, using one of many navigational
features and tools provided by NEAT. In
Fig. 2.1 icons represcent respectively (from
left to right) the page number icon, the
tablc of contents icon, the index icon, the
global notes icon, the local notes icon, the
highlight icon, the hypertext icon, the
view icon, the RETURN icon, the slider
icon, and the previous and the next page
icons. Menus are provided at the top of
the page. Menus are used to perform
actions such as "bookmark a page", or
“"save neatware”.

In the rest of this section, we
describe two tools wused for the
communication between the various
members of the authoring team and
between authors and learncrs, that is hyperiext links and annotations. For more details of neatwarc, see
(MUL93a).

Fig. 2.1 A sample page.

2.1 Hypertext Links

Hypertext means a non-lincar or associative structure of pieces of text. Pages in nealware may have text which
includes the so called hypertext links, which are mouse-sensitive text phrases. When such a link is clicked with
the mouse, the uscr is moved 1o anciher piece of text, or another page. To help the user find hypertext links,
they are underlined. There are three kinds of hypertext links:
* help hotword, underlined in blue; produces a window on the same screcn
» forward reference, underlined in red; move the reader forwards
» backward reference, underlined in green; move the reader backwards.

Hypertext links can be created and modified during the development of neatware. Thus, some of them
can be uscd for the communication between members of the authoring team, while others can be left for the
lcarners. Neatware hypertext links can also be created and modified by learners.

2.2 Annotations

Annotations arc used by the user (both the author and the learner) highlight important, or difficult scctions

of courscware. Neatware provides the following types of annotations:

* highlighting. A part of the text on the currcnt page can be sclected and highlighted by coloring it with onc
of the available colors. Unlike conventional highlighting, this highlighting can be removed

* margin notes, similar 1o thosc made on the margin of the page. In version 1.1, margin notes can be stored
in both a text and a sound form

* bookmarks, which arc labcls that can be associated with the selected pages. These labels are texts defined
at the time the bookmark is created. The user can use cxisting bookmarks 1o move to the corresponding
pages, add new bookmarks and remove the cxisting bookmarks. A special bookmark is used when the user
quits ncatware. This bookmarks stores the current time and date and it can be used to return to the point
from which the book was exited

* bookmarked notes, which combinc bookmarks with margin notes

* global notes, similar to thosc made on separate sheets of paper, and attached to the book.

The next section briefly describes main features of NEAT.

405

o 4 BEST COPY AVAILABLE

Q

ERIC

Aruitoxt provided by Eic:

3 NEAT

The basic principles of the design of NEAT are:

e maintenance of the book structure (that is the structure of chapters, sections, etc.) is transparent to the
user. Thus, the user can insert, delete, copy and move chapters, sections, and pages without having to
modify any of the navigation tools, such as "go to the next page”

° automatic creation of computerized drills using templates for six types of questions; multiple choice, fill in
the blanks, numeric analysis, position analysis, matching and textual analysis

* support for reusability by allowing the user to store objects and pages for futurc use

* th2 development tools do not show up in neatware, so that the user working with NEAT has a clear idea as
to what the final product will look like. For this reason, NEAT consists of a series of menus that are used
by the user in order to create pages, objects on these pages, elc.
the user has to switch to the ToolBook's author mode as rarely as possible
from NEAT, the user can inspect scripts and properties of ncatware objects.

Therc are three tools to support reusability:

* graphics library stores graphic objects. The library browser provides two interfaces to the set of objects
stored in the library; textual and visual interfaces. The textual interface is in the form of a list of names of
all existing objects. The visual interface allows the user 10 traverse the list of all objects, stored in iconized
forms

* shelves store pages. For each type of a page, there is a separate shelf. When the user removes a page, it
can be stored on a shelf, rather than completely removed. The user can copy or move pages from a shelf
into ncatware. Shelves are limited to a single book, that is the user can not copy pages from a shelf stored
in one neatware into another neatware

® desks store pages. Desks arc similar to shelves, but they can be used for moving pages between different
neatware,

The user can work on at most cne neatware at any given time, but it is possible to switch between
various ncatware. Thus, the user can leave neatware in a certain stage of devclopment, and continue this
development at a later time. More details of the NEAT environment are described in [MUL93b]; the next
scction concentrates on prototyping.

4 Prototyping with NEAT

The user can start devcloping ncatwarc by creating the outline consisting of chapters, scctions and pages. Each
of these pages may be initially blank or contains only text, and its details can be decided later on. In order o
create and maintain the structure of ncatware, the uscr has access to the following opcrations:

s goto the selected page

* insert a new page. Here, the user selects the desired type of a page, for example a chapter, a section, or a

preview page. The user also selects, in the table of contents, the page after which the new page is to be
inserted

rename an existing page
delete an cxisting page. Entire sections, chaplers or views can be deleted. The user has an option of
storing pages being removed on a shelf, or completely removing them
® copy an existing page. Entire sections, or chapters can be copied within the same view, or hctween
different views
* move an existing page. Entire scctions, or chapters can be moved within the same view, or hctween
different views. ' .
The above opcrations can be performed through the so-called Control Panel page. The author uses this pancl
to create and modify the structure of neatware. Control Pancl is not visible to the learner, who can vicw the
Table of Contents page. Below, we describe both types of pages.

406

¢

4.1 Control Panel

The control pancl consists of two parts. The ficld on the left-hand side shows the list of all pages which are
currently present in neatware, see Figure 4.1,

v.Foll Tem,8,732 *
ePreliminasies, 10,749~ " "]
sAbout this courseware,43,118.70 -

(7% Each linc in the above field contains a list. The first character in each line
i] shows the type of the corresponding page:

s.Hardware,12,78,10

-Computer Parts,15,80,12 ~ ‘ v view page
e..0.0,10 .
a.Sottware ,14,79,10) ¢ chapter page
-Operating system,13,77.14 3 S section page

~Programming Languages,22.97.14

e..0,0.10 g - any other type of a page.
s.Tranststion Procesas,17,82,10
~Levets of Translation,18.83.17

-Sesnning. 198447 _ 3] Additionally, the letter "¢" indicates the end of the section. The second
~Parsing and Code Generotion, 20,0517 k<8 | . e .. .

_ -Librerics,21.86,17 :} 1tem on the list on each line is the name of the page. (The remaining items
! c..0.0,13 F H

s.Introduciion 1o Progmming.23,00.19. ~f | are not relevant for this paper.) . o
-liistory of Moduls,2489,23 i.] The sccond half of the control panel, placed on the right-hand side is a set
-Program's Life Cycte,29.84,23 7~ 7 . . .

~Programs in MODULAZ8.93,23 " 1} of buttons to perform various operations, sce Figure 4.2.

- Modules,30,85,23 +

Fig. 4.1 Part of Control Pancl

[Fall Term]

Go to page III insen Page]

[hoenh_oe&Slw | The top button, labeled FALL TERM in the above example, produces a

l_ pop-up menu with the names of all existing views. This button can be
used to change the current view and show its contents in the field on the

I left-hand side. For most operations, the user selects the page from the

] list of all pagzs. For example, when the user wants to insert a new page,

 [oiecovoc] (o) [screll] [t | | he or she has to specify where the page is to be inserted, by selecting the
Toinserts page. sl me e srcomene | P28¢ after which the new page will be included. After sclecting the
» page AFTER which & new page witl be existing page, the user clicks the INSERT PAGE bution, and NEAT
;z’l:ac.::o;;d :::3::, l:ile fﬁ;:“:ﬁ}:: presents the buttons and fields shown in Figure 4.3.

cortesponding hution. Mave the mouse over
buttons to get more help.

Fig. 4.2 Another part of Control Panel,

Name of & page: The top field is used to type the name of a new page (OS1 in the above
S1 example). The user has also to specify the type of new page by sclecting
age type one item in the PAGE TYPE box; by default it is a tutorial page. To
‘g::;m complete the insertion, the user can either hit RETURN when the text
Section pointer is in the NAME OF A PAGE box, or click on the DO IT button.
il The user can cancel the operation by clicking the CANCEL button.
Question

g Confiren Clicking the CONFIRM button will allow the user to confirm whether or
ummary . .
not the operation is to be performed.

<

H
a

Fig. 4.3 Inserting a new page.

w0 BEST COPY AVAILABLE

When the copy, or move button is pressed, the user has to sclect the destination view, that is the view inlo

Besiinstion view which the selected page, or pages will be copied or moved (even if the
Beginmer ______________ |3 destination page is the same as the current page); see for example Figure 4.4.
et AT 1 After the user selected the destination view, the left-hard side of the control

panel is split into two parts. The upper part of the screen is for the source view
Fig. 4.4 Copying a page.

and the lower part is for the destination view. The user selects the source page or chapter frem the upper part

of the screen, and then selects a destination page in the lower part of the screen. For example, to copy chapter

cl from view v1 to the beginning of view v2, chapter ¢1 will be selected on the source screen, and view v2 will
be selected on the destination screen.

4.2 Table of Contents

A wable of contents contains three windows, representing respectively the list of chapters, the list of secticns in
the selected chapter and the list of pages in the selected section; see Figure 4.5.

U‘able of Contents in view [Casseom — J[ox]] The user unfolds a chapter or a section
by double-clicking it. For each
@Pl’?"’"‘:m window, there is a title bar, which is
:;In:Jt':n Onu.l:):l. and Proce S also used to unfold the list of pages in
this window. For each window, there
is also a GO button which is used to

move to the selecied page. The button
placed at the top, right comer labcled

(S i R

Parsing ‘ank Code Generstian

Librarlez

— [Comtente) OK, moves the uscr back to the page

>Prcn_mln-rie- where the table of contents icon was

kbout this courseware U — pressed. The button to the left of this

How to take notcs P

Previcw lo Prellminstics_ q button produccs the pop-up mcnus

S ' consisting of the names of all vicws.
c

Y ranslation Procgss
b Introduction to Programmin

The table of contents can be updated
by the author after any operation that

Fig. 4.5 Table of contents.

modifies the structure of neatware; for example after inserting a new page

5 Implementation

We provide only a description of the basic data structures to support prototyping. For more details on the
implementation of NEAT, in particular the implementation of hypertext, sce [MUL93b]; for the description of
OpenScript programming language, sec [TOO91]. The implementation of NEAT is bascd on a trec data
structure. There are two types of nodes in this tree:

» definition node, which contains a name but Goes not have any reference to ToolBook pages

¢ page node, which contains the name and idNumber cf a ToolBook page.

The root of the tree is labeled NEAT (and we will refer to this tree as a MIEAT tree); cach child of the root
represents a single view. A subtree rooted at the view's node represents a structure of this vicw, that is its

chapters, scctions, etc. Then, to copy a chapter from one view to another view, vie perform a (decp) copy of the
subtree rooted at the source chapter. '

The NEAT tree is implemented in a single text ficld, using the sc-c2iled array implementation of a
tree. The line number in the ficld is referred to as the node number for the node stored in this line. A linc in
the text ficld allocated for the node N is of the {ollowing form:

node number of the father, N (name of the node), list of children

408

where the list of children consists of pairs of the form (name, node number) or (name, idNumber) depending
on whether the node represents a definition or a ToolBook page.

The list of available lines in the field is maintained using two propertics, representing respectively the
maximum number of lines in the ficld, and the free list, that is the list of lines that have been deallocated. The
maximum number of lincs in the ficld is initialized o0 a certain value, and is extended whenever necessary.
This implementation cffectively simulates an "open-cnded" array. A single most important concept for all
navigaticn operations is that of a nodc number. Having a node number available, we can find all nceessary
information such as the page name, its father, or the ist of children. Each ncatware has a propertly whose value
is the current node number in the NEAT tree. Moving 1o another page requires not only the exccution a
ToolBook instruction to go to this page, but also updating the node number. The basic operation uscd for
navigation is a singlc step in the depth-first traversal of the trec. This is how the user moves to the next page.
Moving to the previous page requircs a single step in the reverse depth-first traversal.

Conclusion

Our initial experience with NEAT has been very encouraging. During the last tear, the author of this paper

was involved in the development of several neatware. The most complete applications are:

* SLADER, ncatware on drug and alcohol abuse, see [MUL93c]

¢ CINTERACTIVE, ncatware on teaching programming in C

* MC, ncatwarc on teaching introductory programming in Modula 11, used for teaching first year students of
Computer Science at Acadia University in 1993/94.

Other ncatware are being designed.

During the developmert of SLADER, we have prototyped large portions of the material, and then
presented it 1o the subject-arca experts (specialists on drug and alcohol abuse). We have often used tools such
as margin notes, global notes, and hypertext to compile comments provided by these experts and to produce the
next version. We have also often modified the structure of neatware; for example the contents of the first
version of SLADER has been rearranged as a result of the review conducted by experts from the Counseling

Center. Without the support provided by NEAT, we would not be able 1o complete our work in the same time
period.

Acknowledgments

NEAT was originally designed in the summer of 1992 by Tomasz Miildner from Acadia University, Canada,
and Stefan Mayer and Claus Unger from Hagen University, Germany. Version 1.0 of NEAT was implemented
by T. Miildner in the fall of 1992, and Version 1.1 was implemented by the same author in the summer of
1993. Scveral students of Acadia University helped at the various stages of development of NEAT, in

particular R. Blondon, G. Poulen, Mark Rhodenizer and B. Santosa. C. van Veen implemented most of
SLADER ncatware.

References

(MAU90} Maurer, H., Tomek, I. /{yper-G - A Survey. Report 284, 11G, Graz University of Technology, 1990.

[MER89] Merill, D., Li, Z. and Jones M. Limitations of First Generation [nstructional Design. Educational
Technology, Jan. 1990.

[ALE91] Alessi, S. and Trollip S. Computer-Based Instruction. Second Edition. Prentice-Hall, 1991.

[MAY93] Mayer, S., Miildner, T. and Unger, C. NEAT: An iNtegrated Authoring Environment based upon
ToolBook. EDMEDIA'93, Orlando, Florida, Junc 1993.

[MUL93a] Miildner, T. NEATWARE Reference Manual. Technical Report, Acadia University, Sept. 1993.

[MUL93b] Milldner, T. NEAT Reference Manual. Technical Report, Acadia University, Sept. 1993.

[MUL93c] Miildner, T., Duncan, P., van Veen C. Hypermedia Presentation on Drugs and Alcohol Abuse,
Society for Applied Learning Technology, Multimedia’94, Orlando, Florida, Feb. 1994.

[TOO91] Using ToolBook. Asymetrix Corporation, 1991.

409

